Применение серого и белого олова. Олово: свойства, интересные факты, применение. Как получают олово из руд


Олово - химический элемент с символом Sn (от латинского: stannum) и атомным номером 50. Это постпереходный металл в группе 14 периодической таблицы элементов. Олово получают, главным образом, из минеральной оловянной руды, содержащей двуокись олова SnO2. Олово имеет химическое сходство с двумя своими соседями в группе 14, германием и свинцом, и имеет два основных окислительных состояния, +2 и немного более стабильное +4. Олово является 49-м среди наиболее распространенных элементов и имеет наибольшее количество стабильных изотопов в периодической таблице (с 10 стабильными изотопами), благодаря своему «магическому» количеству протонов. Олово имеет два основных аллотропа: при комнатной температуре, устойчивым аллотропом является β-олово, серебристо-белый, ковкий металл, но при низких температурах олово превращается в менее плотное серое α-олово, имеющее алмазную кубическую структуру. Металлическое олово не легко окисляется в воздухе. Первым сплавом, использовавшимся в больших масштабах, была бронза, изготовленная из олова и меди, начиная с 3000 года до н. э. После 600 г. до н. э. производилось чистое металлическое олово. Сплав олова со свинцом, в котором олово составляет 85-90%, обычно состоящий из меди, сурьмы и свинца, использовался для изготовления посуды с бронзового века до 20 века. В наше время, олово используется во многих сплавах, наиболее часто в мягких сплавах олово/свинец, которые, как правило, содержат 60% или более олова. Другое распространенное применение для олова - коррозионностойкое покрытие стали. Неорганические соединения олова, скорее, не токсичны. Из-за своей низкой токсичности, лужёный металл использовался для упаковки еды при помощи жестяных банок, которые, фактически, изготавливаются, главным образом, из стали или алюминия. Однако, чрезмерное воздействие олова может вызвать проблемы с метаболизмом необходимых микроэлементов, таких как медь и цинк, и некоторые оловоорганические соединения могут быть почти такими же токсичными, как цианид.

Характеристики

Физические

Олово - мягкий, ковкий, пластичный и высококристаллический серебристо-белый металл. Когда загибается пластина олова,можно услышать трескучий звук, известный как «оловянный треск», от двойникования кристаллов. Олово плавится при низкой температуре, около 232 °C, самой низкой в группе 14. Точка плавления далее снижается до 177,3 ° C для частиц 11 нм. β-олово (металлическая форма, или белое олово, структура BCT), которое стабилизировано при комнатной температуре и выше, ковкое. Напротив, α-олово (неметаллическая форма, или серое олово), которое стабилизировано при температуре до 13.2 °C, хрупкое. α-олово имеет кубическую кристаллическую структуру, подобную алмазу, кремнию или германию. α-олово вообще не имеет металлических свойств, потому что его атомы образуют ковалентную структуру, в которой электроны не могут свободно передвигаться. Это тускло-серый порошкообразный материал, не имеющий какого-либо широкого применения, помимо нескольких специализированных полупроводниковых применений. Эти два аллотропа, α-олово и β-олово, более известны как серое олово и белое олово, соответственно. Еще два аллотропа, γ и σ, существуют при температурах выше 161 °C и давлениях выше нескольких гигапаскалей. В холодных условиях, β-олово спонтанно трансформируется в α-олово. Это явление известно как «оловянная чума». Хотя температура трансформирования α-β номинально 13.2 °С и примесей (напр. Al, Zn и др.) ниже температуры перехода ниже 0 °C и, при добавлении Sb или Bi, преобразование может вообще не происходить, увеличивая долговечность олова. Коммерческие сорта олова (99,8%) сопротивляются трансформации из-за ингибирующего эффекта небольшого количества висмута, сурьмы, свинца и серебра, присутствующих в качестве примесей. Легирующие элементы, такие как медь, сурьма, висмут, кадмий, серебро, увеличивают твердость вещества. Олово довольно легко образует твердые, хрупкие межметаллические фазы, которые часто нежелательны. Олово не образует множества твердых растворов в других металлах в целом, и несколько элементов имеют заметную твердую растворимость в олове. Простые эвтектические системы, однако, наблюдаются с висмутом, галлием, свинцом, таллием и цинком. Олово становится сверхпроводником ниже 3,72 К и является одним из первых сверхпроводников, которые были изучены; эффект Мейснера, одна из характерных особенностей сверхпроводников, был впервые обнаружен в сверхпроводящих кристаллах олова.

Химические свойства

Олово сопротивляется коррозии из воды, но может быть атаковано кислотами и щелочами. Олово может быть хорошо отполировано и используется в качестве защитного покрытия для других металлов. Защитный оксидный (пассивный) слой предотвращает дальнейшее окисление, такой же, который образуется на сплаве олова со свинцом и других оловянных сплавах. Олово действует как катализатор, когда кислород находится в растворе и помогает ускорить химическую коррозию.

Изотопы

Олово имеет десять стабильных изотопов с атомными массами 112, 114 по 120, 122 и 124, наибольшее количество среди всех элементов. Наиболее распространенными из них являются 120Sn (почти треть всего олова), 118Sn и 116Sn, в то время как наименее распространенными являются 115Sn. Изотопы с четными массовыми числами не имеют ядерного спина, в то время как изотопы с нечетными числами имеют спин +1/2. Олово, с тремя распространенными изотопами 116Sn, 118Sn и 120Sn, является одним из самых простых элементов для обнаружения и анализа с помощью ЯМР-спектроскопии. Это большое количество стабильных изотопов считается прямым результатом атомного числа 50, «магического числа» в ядерной физике. Олово также встречается в 29 нестабильных изотопах, охватывающих все остальные атомные массы от 99 до 137. Кроме 126Sn, с полураспадом 230000 лет, все радиоизотопы имеют период полураспада менее года. Радиоактивные 100Sn, обнаруженные в 1994 году, и 132Sn, являются одними из немногих нуклидов с «двойным магическим» ядром: несмотря на нестабильность, обладающие очень неравномерным соотношением протон-нейтрон, они представляют конечные точки, за которыми стабильность быстро падает. Еще 30 метастабильных изомеров были характерны для изотопов между 111 и 131, наиболее устойчивыми являются 121мСн с периодом полураспада 43,9 года. Относительные различия в обилии устойчивых изотопов олова можно объяснить их различными режимами образования в звёздном нуклеосинтезе. 116Sn через 120Sn включительно формируются в s-процессе (медленные нейтроны) в большинстве звезд и, следовательно, они являются наиболее распространенными изотопами, в то время как 122Sn и 124Sn не только образуются в R-процессе (быстрые нейтроны) в сверхновых и реже. (Изотопы 117Sn через 120Sn также получают пользу от r-процесса.) Наконец, самые редкие протонно-избыточные изотопы, 112Sn, 114Sn, и 115Sn, не могут быть произведены в значительных количествах в s - и r-процессах и считаются одними из p-ядра, происхождение которых не до конца изучено. Некоторые предполагаемые механизмы их формирования включают захват протонов, а также фоторасщепление, хотя 115Sn также может частично вырабатываться в s-процессе, оба сразу, и как «дочь» долгоживущих 115In.

Этимология

Английское слово tin (олово) является общим для германских языков и может быть прослежено в реконструированном прото-германском *tin-om; однокоренные слова включает немецкий Zinn, шведский tenn и голландский tin. Слово не встречается в других ветвях индоевропейских языков, за исключением заимствования у германского (например, ирландское слово tinne произошло от английского tin). Латинское название stannum изначально означало сплав серебра и свинца, а в IV веке до н. э. оно стало означать «олово» - более раннее латинское слово для него было plumbum quandum, или «белый свинец». Слово stannum, видимо, произошло от более раннего stāgnum (то же вещество), происхождение романского и кельтского обозначения для олова. Происхождение stannum/stāgnum неизвестно; оно может быть пре-индо-европейским. Согласно Энциклопедическому словарю Мейера, наоборот, считается, что stannum является производным от корнского stean и является доказательством того, что Корнуолл в первые века нашей эры был основным источником олова.

История

Экстракция и использование олова началась в бронзовом веке, около 3000 г. до н. э., когда было отмечено, что медные предметы, образованные из полиметаллических руд с различным содержанием металлов обладают различными физическими свойствами. Самые ранние бронзовые предметы содержали менее 2% олова или мышьяка и поэтому считаются результатом непреднамеренного легирования за счет трассировки содержания металла в медной руде. Добавление второго металла к меди повышает ее прочность, снижает температуру плавления и улучшает процесс литья путем создания более жидкого расплава, который при охлаждении более плотный и менее губчатый. Это позволило создавать гораздо более сложные формы закрытых предметов из бронзы. Бронзовые предметы с мышьяком появились, в первую очередь, на Ближнем Востоке, где мышьяк часто встречается в связи с медной рудой, однако, вскоре стали понятны риски для здоровья, связанные с использованием таких предметов, а поиски источников гораздо менее опасных оловянных руд начались в начале бронзового века. Это создало спрос на редкое металлическое олово и сформировало торговую сеть, связывающую отдаленные источники олова с рынками культур бронзового века. Касситерит, или оловянная руда (SnO2), оксид олова, скорее всего, был исходным источником олова в древности. Другие формы оловянных руд являются менее распространенными сульфидами, такими как станнит, которые требуют более активного процесса выплавки. Касситерит часто накапливается в аллювиальных каналах в виде россыпных отложений, поскольку он тяжелее, жестче и химически устойчивее, чем гранит. Касситерит обычно черный или вообще темный по цвету, и его залежи легко видны в берегах рек. Аллювиальные (россыпные) месторождения могут быть легко собраны и разделены методами, похожими на отмывку золота.

Соединения и химия

В подавляющем большинстве, олово имеет степень окисления II или в IV.

Неорганические соединения

Галоидные соединения известны для обоих окислительных состояний. Для SN(IV), все четыре галогенида хорошо известны: SnF4, SnCl4, SnBr4, и SnI4. Три наиболее тяжелых элемента являются летучими молекулярными соединениями, в то время как тетрафторид является полимерным. Также известны все четыре галогенида для Sn(II): SnF2, SnCl2, SnBr2 и SnI2. Все это полимерные твердые вещества. Из этих восьми соединений, окрашены только йодиды. Хлорид олова(II) (также известный как двуххлористое олово) является наиболее важным галоидом олова в коммерческом смысле. Хлор реагирует с металлическим оловом, создавая SnCl4 в то время как реакция соляной кислоты и олова производит SnCl2 и наводороженный газ. Кроме того, SnCl4 и Sn сочетаются с хлоридом олова посредством процесса, называемого со-пропорционирование: SnCl4 + СН → 2 Sncl2 Олово может образовывать много оксидов, сульфидов и других халькогенидных производных. Диоксид SnO2 (касситерит) образуется при нагревании олова в присутствии воздуха. SnO2 имеет амфотерный характер, что означает, что он растворяется в кислых и основных растворах. Станнаты со структурой Sn(OH)6]2, как К2, также известны, хотя свободная оловянная кислота Н2[СН(он)6] неизвестна. Сульфиды олова существуют как в +2, так и в +4 окислительных состояниях: сульфид олова(II) и сульфид олова(IV) (мозаичное золото).

Гидриды

Станнан (SnH4), с оловом в окислительном состоянии +4, нестабилен. Оловоорганические гидриды, однако, хорошо известны, например, трибутилин гидрид (Sn(C4H9)3H). Эти соединения выпускают переходные трибутилоловые радикалы олова, которые являются редкими примерами соединений олова(III).

Оловоорганические соединения

Оловоорганические соединения, иногда называемые станнанами, представляют собой химические соединения с олово–углеродными связями.Из соединений олова, органические производные являются наиболее полезными в коммерческом смысле. Некоторые оловоорганические соединения очень токсичны и используются в качестве биоцидов. Первым известным органотиновым соединением был диэтилтиндиодид (C2H5)2SnI2), который обнаружил Эдвард Франкленд в 1849 году. Большинство оловосодержащих органических соединений - бесцветные жидкости или твердые вещества, устойчивые к воздействию воздуха и воды. Они принимают тетраэдрическую геометрию. Тетраалкил и тетраарилтиновые соединения могут быть изготовлены с использованием реагентов Григнарда:

    4 + 4 RMgBr → R

Смешанные галогенид-алкилы, которые являются более распространенными и имеют большую коммерческую ценность, чем тетраоргановые производные, изготовляются путем перераспределения реакций:

    4Sn → 2 SnCl2R2

Двухвалентные оловоорганические соединения являются редкостью, хотя более распространены, чем двухвалентные органогерманиумные и кремнийорганические соединения. Большая стабилизация, которую имеет Sn(II), объясняется «эффектом инертной пары». Оловосодержащие органические(II) в соединения включают как станнилены (формула: R2Sn, как видно для синглетных карбенов), так и дистаннилены (R4Sn2), которые примерно эквивалентны алкенам. Оба класса проявляют необычные реакции.

Возникновение

Олово образуется в длительном s-процессе в низко-и средне-массовых звездах (с массами от 0,6 до 10 раз больше, чем масса Солнца) и, наконец, при бета-распаде тяжелых изотопов индия. Олово является самым распространенным 49-м элементом в земной коре, составляя 2 промилле по сравнению с 75 мг цинка, 50 мг / л для меди и 14 промилле на свинец. Олово не встречается как самородный элемент, но должно быть извлечено из различных руд. Касситерит (SnO2) является единственным коммерчески важным источником олова, хотя небольшие количества олова извлекаются из сложных сульфидов, таких как станнит, ципиндрит, франкеит, канфилдит и тилит. Минералы с оловом почти всегда ассоциируются с гранитной породой, обычно на уровне 1% содержания оксида олова. Из-за высокого удельного веса диоксида олова, около 80% добытого олова происходит из вторичных отложений, обнаруженных из первичных залежей. Олово часто извлекается из гранул, промытых ниже по течению в прошлом и осаждаемых в долинах или море. Наиболее экономичными способами добычи олова являются вычерпывание, гидравлика или открытые карьеры. Большая часть мирового олова производится из россыпных отложений, которые могут содержать всего лишь 0,015% олова. Мировые запасы оловянных рудников (тонны, 2011)

    Китай 1500000

    Малайзия 250000

  • Индонезия 800000

    Бразилия 590000

    Боливия 400000

    Россия 350000

    Австралия 180000

    Таиланд 170000

    Другие 180000

    Итого 4800000

Примерно 253000 тонн олова были добыты в 2011 году, в основном, в Китае (110000 т), Индонезии (51000 т), Перу (34600 т), Боливии (20700 т) и Бразилии (12000 тонн). Оценки производства олова исторически варьировались в зависимости от динамики экономической целесообразности и развития горнодобывающих технологий, но, по оценкам, при нынешних темпах потребления и технологиях, на Земле через 40 лет закончится добыча олова. Лестер Браун предположил, что олово может закончиться в течение 20 лет на основе чрезвычайно консервативный экстраполяция 2% рост в год. Экономически извлекаемые запасы олова: Млн. тонн в год

Вторичное, или ломовое, олово, также является важным источником этого металла. Восстановление олова за счет вторичного производства или переработки лома олова растет быстрыми темпами. В то время как Соединенные Штаты не добывали олово с 1993 года, ни плавили олово с 1989 года, они были крупнейшим вторичным производителем олова, переработав в 2006 году почти 14000 тонн. Новые месторождения находятся на юге Монголии, и в 2009 году новые месторождения олова были обнаружены в Колумбии Seminole Group Colombia CI, SAS.

Производство

Олово получают путем карботермического восстановления оксидной руды с использованием углерода или кокса. Могут быть использованы отражательные печи и электропечи.

Цена и обмен

Олово является уникальным среди других минеральных сырьевых товаров из-за сложных соглашений между странами-производителями и странами-потребителями, начиная с 1921 года. Более ранние соглашения, как правило, были несколько неформальными и спорадическими и привели к «Первому Международному соглашению об олове» в 1956 году, первому из постоянных серий соглашений, которые фактически перестали действовать в 1985 году. Благодаря этой серии соглашений, Международный совет по олову (МСО) оказал значительное влияние на цены на олово. МСО поддержал цену на олово в периоды низких цен путем покупки олова для своего буферного запаса и смог сдержать цену в периоды высоких цен путем продажи олова из этого запаса. Это был анти-рыночный подход, призванный обеспечить достаточный приток олова в страны-потребители и получение прибыли для стран-производителей. Однако, буферный запас был недостаточно велик, и в течение большей части этих 29 лет, цены на олово росли, иногда резко, особенно с 1973 по 1980 годы, когда разгул инфляции мучил многие мировые экономики. В конце 1970-х и начале 1980-х годов, запасы олова в правительстве США находились в агрессивном режиме продажи, отчасти для того, чтобы воспользоваться исторически высокими ценами на олово. Резкий спад 1981-82 годов оказался довольно жестким для оловянной промышленности. Потребление олова резко сократилось. МСО смог избежать действительно резкого сокращения за счет ускоренной покупки для своего буферного запаса; эта деятельность потребовала от МСО широкомасштабного заимствования у банков и металлургических торговых фирм для увеличения своих ресурсов. МСО продолжал занимать средства до конца 1985 года, когда он достиг своего кредитного лимита. Сразу после этого наступил большой «оловянный кризис», а затем олово исключили из торгов на Лондонской бирже металлов на срок три года, МСО вскоре развалился, а цены на олово, уже в условиях свободного рынка, резко упали до $4 за фунт (453 г), и оставалась на этом уровне до 1990-х годов. Цена вновь увеличилась к 2010 году с отскоком в потреблении после Всемирного экономического кризиса 2008-09 годов, сопровождая возобновление и продолжение роста потребления в развивающихся странах мира. Лондонская Биржа металлов (LME) - главная торговая площадка для олова. Другие рынки олова - Куала-Лумпурский рынок олова (KLTM) и Индонезийская биржа олова (INATIN).

Применения

В 2006 году, около половины всего произведенного олова использовалось в припоях. Остальные применения были разделены между оловянным покрытием, оловянными химическими веществами, латунными и бронзовыми сплавами, а также нишевым использованием.

Припой

Олово уже давно используется в сплавах со свинцом в качестве припоя, в количестве от 5 до 70%. Олово образует эвтектическую смесь со свинцом в пропорции 63% олова и 37% свинца. Такие припои используются для соединения труб или электрических цепей. С 1 июля 2006 года вступила в силу Директива Европейского союза об отходах электрического и электронного оборудования (Директива WEEE) и Директива об ограничении использования опасных веществ. Содержание свинца в таких сплавах сократилось. Замена свинца связана со множеством проблем, в том числе, с более высокой температурой плавления, и образованием «усов олова». «Оловянная чума» может наблюдаться в бессвинцовых припоях.

Лужение

Оловянные связи хорошо утюжатся и используются для того, чтобы покрывать свинец, цинк и сталь, чтобы предотвратить коррозию. Луженые стальные контейнеры широко используются для консервации продуктов питания, и это формирует большую часть рынка металлического олова. В Лондоне в 1812 году впервые была изготовлена оловянная канистра для консервирования продуктов питания. В Британском английском такие банки называются «tins», а в Америке их называют «cans» или «tin cans». Сленговое название банки пива - «tinnie» или «tinny». Медные сосуды для приготовления пищи, такие как кастрюли и сковородки, часто облицовываются тонким слоем олова, так как сочетание кислотной пищи с медью может быть токсичным.

Специализированные сплавы

Олово в сочетании с другими элементами образует множество полезных сплавов. Олово наиболее часто сплавляют с медью. Сплав олова со свинцом имеет 85-99% олова; металл для подшипников также содержит высокий процент олова. Бронза, в основном, медная (12% олова), в то время как добавление фосфора дает фосфорную бронзу. Колокольная бронза - это также медно-оловянный сплав, содержащий 22% олова. Олово иногда использовалось в монетах, для создания американских и канадских грошей. Из-за того, что медь часто являлась основным металлом в таких монетах, иногда включая цинк, их можно назвать бронзовыми и/или латунными сплавами. Соединение Nb3Sn из ниобия-олова коммерчески использовалось в катушках сверхпроводящих магнитов из-за его высокой критической температуры (18 K) и критического магнитного поля (25 T). Сверхпроводящий магнит весом всего два килограмма способен создать такое же магнитное поле, как и электромагниты с обычным весом. Небольшая доля олова добавляется в циркониевые сплавы для облицовки ядерного топлива. Большинство металлических труб на органе имеют различные объемы олова/свинца, при этом наиболее распространенными являются сплавы 50/50. Количество олова в трубе определяет тон трубы, так как олово придает инструменту желаемый резонанс. Когда сплав олова/свинца охлаждается, свинец охлаждается немного быстрее и производит пестрый или пятнистый эффект. Этот сплав металла называют пятнистым металлом. Основными преимуществами использования олова для труб являются его внешний вид, работоспособность и устойчивость к коррозии.

Другие применения

Перфорированная луженая сталь - это ремесленная техника, возникшая в Центральной Европе для создания предметов домашнего обихода, которые были одновременно функциональными и декоративными. Перфорированные оловянные фонарики являются наиболее распространенным применением этой техники. Свет свечи, проходящий сквозь перфорацию, создает декоративный световой рисунок. Фонари и другие перфорированные оловянные изделия создавались в Новом Свете с самых ранних европейских поселений. Известный пример - фонарь Revere, названный в честь Павла Ревера. До современной эпохи, в ряде районов Альп, козий или бараний рог затачивали и сквозь него пробивали металл в форме алфавита и цифр от одного до девяти. Этот инструмент обучения был известен просто как «рог». Современные репродукции украшены такими мотивами, как сердца и тюльпаны. В Америке для пирожных и еды до охлаждения использовались деревянные шкафы различных стилей и размеров, предназначенные для того, чтобы отбить вредителей и насекомых и сохранить скоропортящиеся пищевые продукты от пыли. Это были либо напольные, либо подвесные шкафы. В таких шкафах имелись оловянные вставки в дверцах и иногда на боках. Оконные стекла чаще всего изготавливают путем помещения расплавленного стекла на расплав олова (флоат-стекло - листовое стекло, вырабатываемое на расплаве металла), в результате чего получается безупречно ровная поверхность. Это также называется «процесс Пилкингтон». Олово также используется в качестве отрицательного электрода в современных литий-ионных батареях. Его применение несколько ограничено тем, что некоторые оловянные поверхности катализируют разложение карбонатных электролитов, используемых в литий-ионных батареях. Фторид олова(II) добавляется в некоторые продукты по уходу за зубами (SnF2). Фторид олова (II) можно смешивать с абразивами кальция, в то время как более распространенный фторид натрия постепенно становится биологически неактивным в присутствии соединений кальция. Было также показано, что он более эффективен, чем фторид натрия в контроле гингивита.

Оловоорганические соединения

Среди всех химических соединений олова, наиболее часто используются оловосодержащие органические соединения. Их мировое промышленное производство, вероятно, превышает 50000 тонн.

Стабилизаторы ПВХ

Основное коммерческое применение оловоорганических соединений - в стабилизации ПВХ пластика. В отсутствии таких стабилизаторов, ПВХ, в противном случае, будет быстро деградировать под воздействием тепла, света и атмосферного кислорода, что приведет к тому, что продукт обесцветится и будет хрупким. Олово очищает лабильные ионы хлора (Сl−), которые, в противном случае, вызывают потерю HCl из пластика. Типичные соединения олова - карбоновые кислоты, производные дибутилоловодихлорида, такие как дилаурат дибутилолова.

Биоциды

Некоторые соединения органотина относительно токсичны, что имеет свои преимущества и недостатки. Они используются из-за своих биоцидных свойств, как фунгициды, пестициды, альгицидов, средства для защиты древесины и противогнилостные средства. Оксид трибутилолова используется в качестве консерванта древесины. Трибутилтин использовался как добавка к судовой краске для предотвращения роста морских организмов на судах, при этом, применение уменьшилось после того, как органотиновые соединения были признаны стойкими органическими загрязнителями с чрезвычайно высокой токсичностью для некоторых морских организмов (например, багрянка). ЕС запретил использование соединений органотина в 2003 году, в то время как опасения по поводу токсичности этих соединений для морской жизни и ущерб воспроизводству и росту некоторых морских видов (в некоторых докладах описывается биологическое воздействие на морскую жизнь в концентрации 1 нм на литр) привели ко всемирному запрету со стороны Международной морской организации. В настоящее время, многие государства ограничивают использование соединений органотина судами длиной более 25 м.

Органическая химия

Некоторые оловянные реагенты полезны в органической химии. В самом распространенном применении, двуххлористое олово является общим восстановительным веществом для преобразования групп нитро и оксима к аминам. Реакция Стиля связывает соединения органотина с органическими галоидами или псевдогалидами.

Литий-ионные батареи

Олово образует несколько межметаллических фаз с литиевым металлом, что делает его потенциально привлекательным материалом для применения в аккумуляторах. Крупное объемное расширение олова при легировании литием и нестабильность оловоорганического электролитного интерфейса при низких электрохимических потенциалах являются наибольшими трудностями для использования в коммерческих клетках. Проблема была частично решена компанией Sony. Олово интер-металлические соединения с кобальтом и углеродом реализуется компанией Sony в ее клетках Nexelion, выпущенных в конце 2000-х годов. Состав активного вещества равен приблизительно Sn0.3Co0.4C0.3. Недавние исследования показали, что только некоторые кристаллические грани тетрагонального (бета) Sn несут ответственность за нежелательную электрохимическую активность.

Олово - пластичный, ковкий и легкоплавкий блестящий металл серебристо-белого цвета. Используется в основном как безопасное, нетоксичное, коррозионностойкое покрытие в чистом виде или в сплавах с другими металлами. Главные промышленные применения олова — в белой жести (луженое железо) для изготовления тары, в припоях для электроники, в домовых трубопроводах, в подшипниковых сплавах и в покрытиях из олова и его сплавов.Элемент состоит из 10 изотопов с массовыми числами 112, 114-120, 122, 124; последний слабо радиоактивен; изотоп 120 Sn наиболее распространен (около 33%).

Смотрите так же:

СТРУКТУРА

Олово имеет две аллотропные модификации: a-Sn (серое олово) с гранецентрированной кубической кристаллической решеткой и b-Sn (обычное белое олово) с объемноцентрированной тетрагональной кристаллической решеткой. Фазовый переход b -> a ускоряется при низких температурах (-30° С) и в присутствии зародышей кристаллов серого олова; известны случаи, когда оловянные изделия на морозе рассыпались в серый порошок («оловянная чума»), но это превращение даже при очень низких температурах резко тормозится наличием мельчайших примесей и поэтому редко встречается, представляя скорее научный, чем практический интерес.

СВОЙСТВА

Плотность b-Sn 7,29 г/см 3 , плотность a-Sn 5.85 г/см 3 ,. Температура плавления 231,9°C, температура кипения 2270°C.
Температурный коэффициент линейного расширения 23·10 -6 (0-100 °С); удельная теплоемкость (0°С) 0,225 кдж/(кг·К), то есть 0,0536 кал/(г·°С); теплопроводность (0°С) 65,8 вт/(м·К.), то есть 0,157 кал/(см·сек·°С); удельное электрическое сопротивление (20 °С) 0,115·10 -6 ом·м, то есть 11,5·10 -6 ом·см. Серое олово является диамагнетиком, а белое — парамагнетиком.

Предел прочности при растяжении 16,6 Мн/м 2 (1,7 кгс/мм 2); относительное удлинение 80-90%; твердость по Бринеллю 38,3-41,2 Мн/м 2 (3,9-4,2 кгс/мм 2). При изгибании прутков олова слышен характерный хруст от взаимного трения кристаллитов.

Чистое олово обладает низкой механической прочностью при комнатной температуре (можно согнуть оловянную палочку, при этом слышится характерный треск, обусловленный трением отдельных кристаллов друг о друга) и поэтому редко используется.

ЗАПАСЫ И ДОБЫЧА

Олово - редкий рассеянный элемент, по распространенности в земной коре олово занимает 47-е место. Кларковое содержание олова в земной коре составляет, по разным данным, от 2·10 −4 до 8·10 −3 % по массе. Основной минерал олова - касситерит (оловянный камень) SnO 2 , содержащий до 78,8 % олова. Гораздо реже в природе встречается станнин (оловянный колчедан) - Cu 2 FeSnS 4 (27,5 % Sn). Мировые месторождения олова находятся в основном в Китае и Юго-Восточной Азии - Индонезии, Малайзии и Таиланде. Также есть крупные месторождения в Южной Америке (Боливии, Перу, Бразилии) и Австралии.

В России запасы оловянных руд расположены в Чукотском автономном округе (Пыркакайские штокверки; рудник/посёлок Валькумей, Иультин - разработка месторождений закрыта в начале 1990-х годов), в Приморском крае (Кавалеровский район), в Хабаровском крае (Солнечный район, Верхнебуреинский район (Правоурмийское месторождение)), в Якутии (месторождение Депутатское) и других районах.

В процессе производства рудоносная порода (касситерит) подвергается дроблению до размеров частиц в среднем ~ 10 мм, в промышленных мельницах, после чего касситерит за счет своей относительно высокой плотности и массы отделяется от пустой породы вибрационно-гравитационным методом на обогатительных столах. В дополнение применяется флотационный метод обогащения/очистки руды. Таким образом удается повысить содержание олова в руде до 40-70 %. Далее проводят обжиг концентрата в кислороде для удаления примесей серы и мышьяка. Полученный концентрат оловянной руды выплавляется в печах. В процессе выплавки восстанавливается до свободного состояния посредством применения в восстановлении древесного угля, слои которого укладываются поочередно со слоями руды, или алюминием (цинком) в электропечах: SnO 2 + C = Sn + CO 2 . Особо чистое олово полупроводниковой чистоты готовят электрохимическим рафинированием или методом зонной плавки.

ПРОИСХОЖДЕНИЕ

Основная форма нахождения олова в горных породах и минералах - рассеянная (или эндокриптная). Однако олово образует и минеральные формы, и в этом виде часто встречается не только как акцессорий в кислых магматических породах, но и образует промышленные концентрации преимущественно в окисной (касситерит SnO 2) и сульфидной (станнин) формах.

В общем можно выделить следующие формы нахождения олова в природе:

  1. Рассеянная форма: конкретная форма нахождения олова в этом виде неизвестна. Здесь можно говорить об изоморфно рассеянной форме нахождения олова вследствие наличия изоморфизма с рядом элементов (Ta, Nb, W - с образованием типично кислородных соединений; V, Cr, Ti, Mn, Sc - с образованием кислородных и сульфидных соединений). Если концентрации олова не превышают некоторых критических значений, то оно изоморфно может замещать названные элементы. Механизмы изоморфизма различны.
  2. Минеральная форма: олово установлено в минералах-концентраторах. Как правило, это минералы, в которых присутствует железо Fe +2: биотиты, гранаты, пироксены, магнетиты, турмалины и т. д. Эта связь обусловлена изоморфизмом, например, по схеме Sn +4 + Fe +2 → 2Fe +3 . В оловоносных скарнах высокие концентрации олова установлены в гранатах (до 5,8 вес.%) (особенно в андрадитах), эпидотах (до 2,84 вес.%) и т. д.
    1. На сульфидных месторождениях олово входит как изоморфный элемент в сфалериты (Силинское месторождение, Россия, Приморье), халькопириты (Дубровское месторождение, Россия, Приморье), пириты. Высокие концентрации олова выявлены в пирротине грейзенов Смирновского месторождения (Россия, Приморье). Считается, что из-за ограниченного изоморфизма происходит распад твёрдых растворов с микровыделениями Cu 2 +1 Fe +2 SnS 4 или тиллита PbSnS 2 и других минералов.

      ПРИМЕНЕНИЕ

      Олово используется в основном как безопасное, нетоксичное, коррозионностойкое покрытие в чистом виде или в сплавах с другими металлами. Главные промышленные применения олова - в белой жести (лужёное железо) для изготовления тары пищевых продуктов, в припоях для электроники, в домовых трубопроводах, в подшипниковых сплавах и в покрытиях из олова и его сплавов. Важнейший сплав олова - бронза (с медью). Другой известный сплав - пьютер - используется для изготовления посуды. Для этих целей расходуется около 33 % всего добываемого олова. До 60 % производимого олова используется в виде сплавов с медью, медью и цинком, медью и сурьмой (подшипниковый сплав, или баббит), с цинком (упаковочная фольга) и в виде оловянно-свинцовых и оловянно-цинковых припоев. В последнее время возрождается интерес к использованию металла, поскольку он наиболее «экологичен» среди тяжёлых цветных металлов. Используется для создания сверхпроводящих проводов на основе интерметаллического соединения Nb 3 Sn.
      Дисульфид олова SnS 2 применяют в составе красок, имитирующих позолоту («поталь»).

      Искусственные радиоактивные ядерные изомеры олова 117m Sn и 119m Sn - источники гамма-излучения, являются мёссбауэровскими изотопами и применяются в гамма-резонансной спектроскопии.
      Интерметаллические соединения олова и циркония обладают высокими температурами плавления (до 2000 °C) и стойкостью к окислению при нагревании на воздухе и имеют ряд областей применения.

      Олово является важнейшим легирующим компонентом при получении конструкционных сплавов титана.
      Двуокись олова - очень эффективный абразивный материал, применяемый при «доводке» поверхности оптического стекла.
      Смесь солей олова - «жёлтая композиция» - ранее использовалась как краситель для шерсти.

      Олово применяется также в химических источниках тока в качестве анодного материала, например: марганцево-оловянный элемент, окисно-ртутно-оловянный элемент. Перспективно использование олова в свинцово-оловянном аккумуляторе; так, например, при равном напряжении, по сравнению со свинцовым аккумулятором свинцово-оловянный аккумулятор обладает в 2,5 раза большей емкостью и в 5 раз большей энергоплотностью на единицу объёма, внутреннее сопротивление его значительно ниже.
      Исследуются изолированные двумерные слои олова (станен), созданные по аналогии с графеном.

      Олово (англ. Tin) — Sn

      КЛАССИФИКАЦИЯ

      Strunz (8-ое издание) 1/A.05-30
      Nickel-Strunz (10-ое издание) 1.AC.10
      Dana (7-ое издание) 1.1.19.1
      Dana (8-ое издание) 1.1.13.1
      Hey’s CIM Ref 1.29
Бром.

1s 2 2s 2 2p 6 3s 2 3p 6 3d 10 4s 2 4p 5 .

Валентные электроны выделены жирным шрифтом. Относится к семейству р-элементов. Так как наибольшее главное квантовое число равно 4-м, а число электронов на внешнем энергетическом уровне равно 7, бром расположен в 4-м периоде, VIIA группе Периодической таблицы. Энергетическая диаграмма для валентных электронов имеет вид:

Германий.

1s 2 2s 2 2p 6 3s 2 3p 6 3d 10 4s 2 4p 2 .

Валентные электроны выделены жирным шрифтом. Относится к семейству p-элементов. Так как наибольшее главное квантовое число равно 4-м, а число электронов на внешнем энергетическом уровне равно 4, германий расположен в 4-м периоде, IVA группе Периодической таблицы. Энергетическая диаграмма для валентных электронов имеет вид:

Кобальт.

1s 2 2s 2 2p 6 3s 2 3p 6 3d 7 4s 2 .

Валентные электроны выделены жирным шрифтом. Относится к семейству d-элементов. Кобальт расположен в 4-м периоде, VIIB группе Периодической таблицы. Энергетическая диаграмма для валентных электронов имеет вид:

Медь.

1s 2 2s 2 2p 6 3s 2 3p 6 3d 10 4s 1 .

Валентные электроны выделены жирным шрифтом. Относится к семейству d-элементов. Так как наибольшее главное квантовое число равно 4-м, а число электронов на внешнем энергетическом уровне равно 1, медь расположена в 4-м периоде, IВ группе Периодической таблицы. Энергетическая диаграмма для валентных электронов имеет вид.

Олово - один из немногих металлов, известных человеку еще с доисторических времен. Олово и медь были открыты раньше железа, а сплав их, бронза, - это, по-видимому, самый первый «искусственный» материал, первый материал, приготовленный человеком.
Результаты археологических раскопок позволяют считать, что еще за пять тысячелетий до нашей эры люди умели выплавлять и само олово. Известно, что древние египтяне олово для производства бронзы возили из Персии.
Под названием «трапу» этот металл описан в древнеиндийской литературе. Латинское название олова stannum происходит от санскритского «ста», что означает «твердый».

Упоминание об олове встречается и у Гомера. Почти за десять веков до новой эры финикияне доставляли оловянную руду с Британских островов, называвшихся тогда Касситеридами. Отсюда название касситерита - важнейшего из минералов олова; состав его Sn0 2 . Другой важный минерал - станнин, или оловянный колчедан, Cu 2 FeSnS 4 . Остальные 14 минералов элемента № 50 встречаются намного реже и промышленного значения не имеют.
Между прочим, наши предки располагали более богатыми оловянными рудами, чем мы. Можно было выплавлять металл непосредственно из руд, находящихся на поверхности Земли и обогащенных в ходе естественных процессов выветривания и вымывания. В наше время таких руд уже нет. В современных условиях процесс получения олова многоступенчатый и трудоемкий. Руды, из которых выплавляют олово теперь, сложны по составу: кроме элемента № 50 (в виде окисла или сульфида) в них обычно присутствуют кремний, железо, свинец, медь, цинк, мышьяк, алюминий, кальций, вольфрам и другие элементы. Нынешние оловянные руды редко содержат больше 1 % Sn, а россыпи - и того меньше: 0,01-0,02% Sn. Это значит, что для получения килограмма олова необходимо добыть и переработать по меньшей мере центнер руды.

Как получают олово из руд

Производство элемента № 50 из руд и россыпей всегда начинается с обогащения. Методы обогащения оловянных руд довольно разнообразны. Применяют, в частности, гравитационный метод, основанный на различии плотности основного и сопутствующих минералов. При этом нельзя забывать, что сопутствующие далеко не всегда бывают пустой породой. Часто они содержат ценные металлы, например вольфрам, титан, лантаноиды. В таких случаях из оловянной руды пытаются извлечь все ценные компоненты.
Состав полученного оловянного концентрата зависит от сырья, и еще от того, каким способом этот концентрат получали. Содержание олова в нем колеблется от 40 до 70%. Концентрат направляют в печи для обжига (при 600-700° С), где из него удаляются относительно летучие примеси мышьяка и серы. А большую часть железа, сурьмы, висмута и некоторых других металлов уже после обжига выщелачивают соляной кислотой. После того как это сделано, остается отделить олово от кислорода и кремния. Поэтому последняя стадия производства чернового олова - плавка с углем и флюсами в отражательных или электрических печах. С физико-химической точки зрения этот процесс аналогичен доменному: углерод «отнимает» у олова кислород, а флюсы превращают двуокись кремния в легкий по сравнению с металлом шлак.
В черновом олове примесей еще довольно много: 5- 8%. Чтобы получить металл сортовых марок (96,5- 99,9% Sn), используют огневое или реже электролитическое рафинирование. А нужное полупроводниковой промышленности олово чистотой почти шесть девяток - 99,99985% Sn - получают преимущественно методом зонной плавки.

Еще один источник

Для того чтобы получить килограмм олова, не обязательно перерабатывать центнер руды. Можно поступить иначе: «ободрать» 2000 старых консервных банок.
Всего лишь полграмма олова приходится на каждую банку. Но помноженные на масштабы производства эти полуграммы превращаются в десятки тонн... Доля «вторичного» олова в промышленности капиталистических стран составляет примерно треть общего производства. В нашей стране работают около ста промышленных установок по регенерации олова.
Как же снимают олово с белой жести? Механическими способами сделать это почти невозможно, поэтому используют различие в химических свойствах железа и олова. Чаще всего жесть обрабатывают газообразным хлором. Железо в отсутствие влаги с ним не реагирует. же соединяется с хлором очень легко. Образуется дымящаяся жидкость - хлорное олово SnCl 4 , которое применяют в химической и текстильной промышленности или отправляют в электролизер, чтобы получить там из него металлическое олово. И опять начнется «круговерть»: этим оловом покроют стальные листы, получат белую жесть. Из нее сделают банки, банки заполнят едой и запечатают. Потом их вскроют, консервы съедят, банки выбросят. А потом они (не все, к сожалению) вновь попадут на заводы «вторичного» олова.
Другие элементы совершают круговорот в природе с участием растений, микроорганизмов и т. д. Круговорот олова - дело рук человеческих.

Олово в сплавах

На консервные банки идет примерно половина мирового производства олова. Другая половина - в металлургию, для получения различных сплавов. Мы не будем подробно рассказывать о самом известном из сплавов олова - бронзе, адресуя читателей к статье о меди - другом важнейшем компоненте бронз. Это тем более оправдано, что есть безоловянные бронзы, но нет «безмедных». Одна из главных причин создания безоловянных бронз - дефицитность элемента № 50. Тем не менее бронза, содержащая олово, по-прежнему остается важным материалом и для машиностроения, и для искусства.
Техника нуждается и в других оловянных сплавах. Их, правда, почти не применяют в качестве конструкционных материалов: они недостаточно прочны и слишком дороги. Зато у них есть другие свойства, позволяющие решать важные технические задачи при сравнительно небольших затратах материала.
Чаще всего оловянные сплавы применяют в качестве антифрикционных материалов или припоев. Первые позволяют сохранять машины и механизмы, уменьшая потери на трение; вторые соединяют металлические детали.
Из всех антифрикционных сплавов наилучшнми свойствами обладают оловянные баббиты, в составе которых до 90% олова. Мягкие и легкоплавкие свинцовооловянные припои хорошо смачивают поверхность большинства металлов, обладают высокой пластичностью и сопротивлением усталости. Однако область их применения ограничивается из-за недостаточной механической прочности самих припоев.
Олово входит также в состав типографского сплава гарта. Наконец, сплавы на "основе олова очень нужны электротехнике. Важнейший материал для электроконденсаторов - станиоль; это почти чистое олово, превращенное в тонкие листы (доля других металлов в станиоле не превышает 5 %).
Между прочим, многие сплавы олова - истинные химические соединения элемента № 50 с другими металлами. Сплавляясь, олово взаимодействует с кальцием, магнием, цирконием, титаном, многими редкоземельными элементами. Образующиеся при этом соединения отличаются довольно большой тугоплавкостью. Так, станнид циркония Zr 3 Sn 2 плавится лишь при 1985° С. И «виновата» здесь не только тугоплавкость циркония, но и характер сплава, химическая связь между образующими его веществами. Или другой пример. Магний к числу тугоплавких металлов не отнесешь, 651° С - далеко не рекордная температура плавления. Олово плавится при еще более низкой температуре - 232° С. А их сплав - соединение Mg2Sn - имеет температуру плавления 778° С.
Тот факт, что элемент № 50 образует довольно много-численные сплавы такого рода, заставляет критически отнестись к утверждению, что лишь 7% производимого в мире олова расходуется в виде химических соединений. Видимо, речь здесь идет только о соединениях с неметаллами.


Соединения с неметаллами

Из этих веществ наибольшее значение имеют хлориды. В тетрахлориде олова SnCl 4 растворяются иод, фосфор, сера, многие органические вещества. Поэтому и используют его главным образом как весьма специфический растворитель. Дихлорид олова SnCl 2 применяют как про-траву при крашении и как восстановитель при синтезе органических красителей. Те же функции в текстильном производстве еще у одного соединения элемента № 50 - станната натрия Na 2 Sn0 3 . Кроме того, с его помощью утяжеляют шелк.
Промышленность ограниченно использует и окислы олова. SnO применяют для получения рубинового стекла, a Sn0 2 - белой глазури. Золотисто-Желтые кристаллы дисульфида олйва SnS 2 нередко называют сусальным золотом, которым «золотят» дерево, гипс . Это, если можно так выразиться, самое «антисовременное» применение соединений олова. А самое современное?
Если иметь в виду только соединения олова, то это применение станната бария BaSn0 3 в радиотехнике в качестве превосходного диэлектрика. А один из изотопов олова, il9Sn, сыграл заметную роль при изучении эффекта Месс- бауэра - явления, благодаря которому был создан новый метод исследования - гамма-резонансная спектроскопия. И это не единственный случай, когда древний металл сослужил службу современной науке.
На примере серого олова - одной из модификаций элемента № 50 - была выявлена связь между свойствами и химической природой полупроводникового материала И это, видимо, единственное, за что серое олово можно помянуть добрым словом: вреда оно принесло больше, чем пользы. Мы еще вернемся к этой разновидности эле мента № 50 после рассказа о еще одной большой и важной группе соединений олова.

Об оловоорганике

Элементоорганических соединений, в состав которых входит олово, известно великое множество. Первое из них получено еще в 1852 г.
Сначала вещества этого класса получали лишь одним способом - в обменной реакции между неорганическими соединениями олова и реактивами Гриньяра. Вот пример такой реакции:
SnCl 4 + 4RMgX → SnR 4 + 4MgXCl (R здесь - углеводородный радикал, X - галоген).
Соединения состава SnR4 широкого практического при-менения не нашли. Но именно из них получены другие оловоорганические вещества, польза которых несомненна.


Впервые интерес к оловоорганнке возник в годы первой мировой войны. Почти все органические соединения олова, полученные к тому времени, были токсичны. В качестве отравляющих веществ эти соединения не были использованы, их токсичностью для насекомых, плесневых грибков, вредных микробов воспользовались позже. На основе ацетата трифенилолова (C 6 H 5) 3 SnOOCCH 3 был создан эффективный препарат для борьбы с грибковыми заболеваниями картофеля и сахарной свеклы. У этого препарата оказалось еще одно полезное свойство: он стимулировал рост и развитие растений.
Для борьбы с грибками, развивающимися в аппаратах целлюлозно-бумажной промышленности, применяют другое вещество - гидроокись трибутилолова (С 4 Н 9)зSnОН. Это намного повышает производительность аппаратуры.
Много «профессий» у дилаурината дибутилолова (C 4 H 9) 2 Sn(OCOC 11 H 23) 2 . Его используют в ветеринарной практике как средство против гельминтов (глистов). Это же вещество широко применяют в химической промышленности как стабилизатор поливинилхлорида и других полимерных материалов и как катализатор. Скорость
реакции образования уретанов (мономеры полиуретановых каучуков) в присутствии такого катализатора возрастает в 37 тыс. раз.
На основе оловоорганических соединений созданы эффективные инсектициды; оловоорганические стекла надежно защищают от рентгеновского облучения, полимерными свинец- и оловоорганическими красками покрывают подводные части кораблей, чтобы на них не нарастали моллюски.
Все это соединения четырехвалентного олова. Ограниченные рамки статьи не позволяют рассказать о многих других полезных веществах этого класса.
Органические соединения двухвалентного олова, напротив, немногочисленны и практического применения пока почти не находят.

О сером олове

Морозной зимой 1916 г. партия олова была отправлена по железной дороге с Дальнего Востока в европейскую часть России. Но на место прибыли не серебристобелые слитки, а преимущественно мелкий серый порошок.
За четыре года до этого произошла катастрофа с экспедицией полярного исследователя Роберта Скотта. Экспедиция, направлявшаяся к Южному полюсу, осталась без топлива: оно вытекло из железных сосудов сквозь швы, пропаянные оловом.
Примерно в те же годы к известному русскому химику В. В. Марковникову обратились из интендантства с просьбой объяснить, что происходит с лужеными чайниками, которыми снабжали русскую армию. Чайник, который принесли в лабораторию в качестве наглядного примера, был покрыт серыми пятнами и наростами, которые осыпались даже при легком постукивании рукой. Анализ показал, что и пыль, и наросты состояли только из олова, без каких бы то ни было примесей.


Что же происходило с металлом во всех этих случаях?
Как и многие другие элементы, олово имеет несколько аллотропических модификаций, несколько состояний. (Слово «аллотропия» переводится с греческого как «другое свойство», «другой поворот».) При нормальной плюсовой температуре олово выглядит так, что никто не может усомниться в принадлежности его к классу металлов.
Белый металл, пластичный, ковкий. Кристаллы белого олова (его называют еще бета-оловом) тетрагональные. Длина ребер элементарной кристаллической решетки - 5,82 и 3,18 А. Но при температуре ниже 13,2° С «нормальное» состояние олова иное. Едва достигнут этот температурный порог, в кристаллической структуре оловянного слитка начинается перестройка. Белое олово превращается в порошкообразное серое, или альфа-олово, и чем ниже температура, тем больше скорость этого превращения. Максимума она достигает при минус 39° С.
Кристаллы серого олова кубической конфигурации; размеры их элементарных ячеек больше - длина ребра 6,49 А. Поэтому плотность серого олова заметно меньше, чем белого: 5,76 и 7,3 г/см3 соответственно.
Результат превращения белого олова в серое иногда называют «оловянной чумой». Пятна и наросты на армейских чайниках, вагоны с оловянной пылью, швы, ставшие проницаемыми для жидкости,- следствия этой «болезни».
Почему сейчас не случаются подобные истории? Только по одной причине: оловянную чуму научились «лечить». Выяснена ее физико-химическая природа, установлено, как влияют на восприимчивость металла к «чуме» те или иные добавки. Оказалось, что алюминий и цинк способствуют этому процессу, а висмут, свинец и сурьма, напротив, противодействуют ему.
Кроме белого и серого олова, обнаружена еще одна аллотропическая модификация элемента № 50 - гамма-олово, устойчивое при температуре выше 161° С. Отличительная черта такого олова - хрупкость. Как и все металлы, с ростом температуры олово становится пластичнее, но только при температуре ниже 161° С. Затем оно полностью утрачивает пластичность, превращаясь в гамма- олово, и становится настолько хрупким, что его можно истолочь в порошок.

Еще раз о дефиците метела

Часто статьи об элементах заканчиваются рассуждениями автора о будущем своего «героя». Как правило, рисуется оно в розовом свете. Автор статьи об олове лишен этой возможности: будущее олова - металла, несомненно, Полезнейшего - неясно. Неясно только по одной причине.
Несколько лет пазад американское Горное бюро опубликовало расчеты, из которых следовало, что разведанных запасов элемента № 50 хватит миру самое большее на 35 лет. Правда, уже после этого было найдено несколько новых месторождений, в том числе крупнейшее в Европе, расположенное на территории Польской Народной Республики. И тем не менее дефицит олова продолжает тревожить специалистов.
Поэтому, заканчивая рассказ об элементе № 50, мы хотим еще раз напомнить о необходимости экономить и беречь олово.
Нехватка этого металла волновала даже классиков литературы. Помните у Андерсена? «Двадцать четыре солдатика были совершенно одинаковые, а двадцать пятый солдатик был одноногий. Его отливали последним, и олова немного не хватило». Теперь олова не хватает не немного. Недаром даже двуногие оловянные солдатики стали редкостью - чаще встречаются пластмассовые. Но при всем уважении к полимерам заменить олово они могут далеко не всегда.
ИЗОТОПЫ. Олово - один из самых «многоизотопных» элементов: природное олово состоит из десяти изотопов с массовыми числами 112, 114-120, 122 п 124. Самый распространенный из них i20Sn, на его долю приходится около 33% всего земного олова. Почти в 100 раз меньше олова-115- самого редкого изотопа элемента № 50.
Еще 15 изотопов олова с массовыми числами 108-111, 113, 121, 123, 125-132 получены искусственно. Время жизни этих изотопов далеко не одинаково. Так, олово-123 имеет период полураспада 136 дней, а олово-132 всего 2,2 минуты.


ПОЧЕМУ БРОНЗУ НАЗВАЛИ БРОНЗОЙ? Слово «бронза» почти одинаково звучит на многих европейских языках. Его происхождение связывают с названием небольшого итальянского порта на берегу Адриатического моря - Бриндизи. Именно через этот порт доставляли бронзу в Европу в старину, и в древнем Риме этот сплав называли «эс бриндиси»- медь из Бриндизи.
В ЧЕСТЬ ИЗОБРЕТАТЕЛЯ. Латинское слово frictio означает «трение». Отсюда название антифрикционных материалов, то есть материалов «против трепия». Они мало истираются, отличаются мягкостью и тягучестью. Главное их применение - изготовление подшипниковых вкладышей. Первый антифрикционный сплав на основе олова и свинца предложил в 1839 г. инженер Баббит. Отсюда название большой и очень важной группы антифрикционных сплавов - баббитов.
jKECTb ДЛЯ КОНСЕРВИРОВАНИЯ. Способ длительного сохранения пищевых продуктов консервированием в банках из белой жести, покрытой оловом, первым предложил французский повар ф. Аппер в 1809 г.
СО ДНА ОКЕАНА. В 1976 г. начало работать необычное предприятие, которое сокращенно называют РЭП. Расшифровывается это так: разведочно-эксплуатационное предприятие. Оно размещается в основном на кораблях. За Полярным кругом, в море Лаптевых, в районе Ванькиной губы РЭП добывает с морского дна оловоносный песок. Здесь же, на борту одного из судов, работает обогатительная фабрика.
МИРОВОЕ ПРОИЗВОДСТВО. По американским данным, мировое производство олова в конце прошлого века составляло 174-180 тыс. т.

Химический элемент олово является одним из семи древних металлов, которые известны человечеству. Этот металл входит в состав бронзы, имеющей огромное значение. В настоящее время химический элемент олово утратил востребованность, но его свойства заслуживают детального рассмотрения и изучения.

Что собой представляет элемент

Располагается он в пятом периоде, в четвертой группе (главной подгруппе). Подобное расположение свидетельствует о том, что химический элемент олово - амфотерное соединение, способное проявлять и основные, и кислотные свойства. Относительная атомная масса составляет 50, поэтому его считают легким элементом.

Особенности

Химический элемент олово является пластичным, ковким, легким веществом серебристого белого цвета. По мере эксплуатации он теряет свой блеск, что считают минусом его характеристик. Олово - металл рассеянный, поэтому существуют сложности с его добычей. Элемент имеет высокую температуру кипения (2600 градусов), низкую температуру плавления (231,9 С), большую электрическую проводимость, отличную ковкость. У него высокое сопротивление разрыву.

Олово - элемент, который не обладает токсичными свойствами, не оказывает негативного воздействия на организм человека, поэтому востребован в пищевом производстве.

Какое еще имеет свойство олово? При выборе данного элемента для изготовления посуды и водного трубопровода не придется опасаться за свою безопасность.

Нахождение в организме

Чем еще характеризуется олово (химический элемент)? Как читается его формула? Данные вопросы рассматриваются в курсе школьной программы. В нашем организме данный элемент располагается в костях, способствуя процессу регенерации костной ткани. Его относят к макроэлементам, поэтому для полноценной жизнедеятельности, человеку достаточно от двух до десяти мг олова в сутки.

В организм этот элемент попадает в большем количестве с пищей, но кишечник усваивает не больше пяти процентов поступлений, поэтому вероятность отравления минимальна.

При недостатке данного металла происходит замедление роста, происходит потеря слуха, меняется состав костной ткани, наблюдается облысение. Отравление вызывается поглощением пыли или паров данного металла, а также его соединений.

Основные свойства

Плотность олова имеет среднюю величину. Металл отличается высокой коррозионной стойкостью, поэтому его применяют в народном хозяйстве. Например, олово востребовано при изготовлении консервных банок.

Чем еще характеризуется олово? Применение этого металла основывается также на его способности объединять различные металлы, создавая устойчивую к агрессивным средам, внешнюю среду. Например, сам металл необходим для лужения предметов быта и посуды, а его припои нужны для радиотехники и электричества.

Характеристики

По своим внешним характеристикам этот металл аналогичен алюминию. В реальности сходство между ними незначительное, ограничивается только легкостью и металлическим блеском, устойчивостью к химической коррозии. Алюминий проявляется амфотерные свойства, поэтому легко вступает в реакцию со щелочами и кислотами.

Например, если на алюминий действует уксусная кислота, наблюдается химическое взаимодействие. Олово же способно взаимодействовать только с сильными концентрированными кислотами.

Преимущества и недостатки олова

Данный металл практически не используется в строительстве, поскольку не отличается высокой механической прочностью. В основном в настоящее время используют не чистый металл, а его сплавы.

Выделим основные преимущества данного металла. Особое значение имеет ковкость, ее используют в процессе изготовления предметов быта. Например, эстетично выглядят подставки, светильники, выполненные из данного металла.

Оловянное покрытие позволяет существенно снижать трение, благодаря чему изделие защищено от преждевременного износа.

Среди основных недостатков данного метала можно упомянуть его незначительную прочность. Олово непригодно для изготовления частей и деталей, предполагающих существенные нагрузки.

Добыча металла

Плавление олова осуществляется при невысокой температуре, но из-за трудности его добычи металл считается дорогостоящим веществом. Из-за низкой температуры плавления при нанесении олова на поверхность металла можно получить существенную экономию электрической энергии.

Структура

Металл имеет однородную структуру, но, в зависимости от температуры, возможны разные его фазы, отличающиеся по характеристикам. Среди самых распространенных модификаций данного металла отметим β-вариант, существующий при температуре 20 градусов. Теплопроводность, его температура кипения, являются основными характеристиками, приводимыми для олова. При снижении температуры от 13,2 С образуется α-модификация, именуемая серым оловом. Эта форма не обладает пластичностью и ковкостью, имеет меньшую плотность, поскольку обладает иной кристаллической решеткой.

При переходе из одной формы в другую наблюдается изменение объема, так как существует разница в плотности, в результате чего происходит разрушение оловянного изделия. Такое явление называют «оловянной чумой». Такая особенность приводит к тому, что существенно уменьшается область использования металла.

В природных условиях олово можно найти в составе горных пород в виде рассеянного элемента, кроме того известны его минеральные формы. Например, в касситерите содержится его оксид, а в оловянном колчедане - его сульфид.

Производство

Перспективными для промышленной переработки считают оловянные руды, в которых содержание металла не меньше 0,1 процента. Но в настоящее время эксплуатируют и те месторождения, в которых содержание металла составляет всего 0,01 процента. Для добычи минерала применяют различные способы, учитывая специфику месторождения, а также его разновидность.

В основном оловянные руды представлены в виде песков. Добыча сводится к его постоянной промывке, а также к концентрированию рудного минерала. Коренное месторождение разрабатывать гораздо сложнее, поскольку необходимы дополнительные сооружения, строительство и эксплуатация шахт.

Концентрат минерала перевозят на завод, специализирующийся на плавке цветного металла. Далее осуществляется многократное обогащение руды, измельчение, затем промывание. Рудный шлих восстанавливают, воспользовавшись специальными печами. Для полного восстановления олова этот процесс проводят несколько раз. На завершающем этапе осуществляют процесс очистки от примесей чернового олова, используя термический либо электролитический способ.

Использование

В качестве основной характеристики, позволяющей применять олово, выделяют его высокую коррозионную устойчивость. Данный металл, а также его сплавы являются одними из самых устойчивых соединений по отношению к агрессивным химическим веществам. Больше половины всего олова, производимого в мире, применяется для изготовления белой жести. Данную технологию, связанную с нанесением на сталь тонкого слоя олова, стали применять для защиты от химической коррозии консервных банок.

Способность олова к раскатыванию используется для производства из него тонкостенных труб. Из-за неустойчивости данного металла к низким значениям температур его бытовое использование достаточно ограничено.

У сплавов олова значение теплопроводности существенно ниже, чем у стали, поэтому их можно применять для производства умывальников и ванн, а также для изготовления различной сантехнической фурнитуры.

Олово подходит для производства незначительных декоративных и бытовых предметов, изготовления посуды, создания оригинальных ювелирных украшений. Этот неяркий и ковкий металл при объединении с медью давно стал одним из самых излюбленных материалов скульпторов. Бронза объединяет в себе высокую прочность, стойкость к химической и естественной коррозии. Этот сплав востребован в качестве декоративного и строительного материала.

Олово является тонально-резонансным металлом. Например, при его соединении со свинцом получают сплав, применяемый для изготовления современных музыкальных инструментов. С древних времен известны бронзовые колокола. Для создания органных труб применяют сплав олова со свинцом.

Заключение

Увеличение внимания современного производства к вопросам, связанным с охраной окружающей среды, а также к проблемам, связанным с сохранением здоровья населения, повлиял на состав материалов, применяемых в изготовлении электроники. Например, возрос интерес к технологии бессвинцового процесса пайки. Свинец является материалом, приносящим существенный вред здоровью человека, поэтому его перестали применять в электротехнике. Ужесточились требования к пайке, вместо опасного свинца стали использовать сплавы олова.

Чистое олово практически не используется в промышленности, поскольку возникают проблемы с развитием «оловянной чумы». Среди основных сфер применения данного редкого рассеянного элемента выделим изготовление сверхпроводящих проводов.

Покрытие чистым оловом контактных поверхностей позволяет увеличивать процесс пайки, защищать металл от процесса коррозии.

В результате перехода на бессвинцовую технологию многих производителей стали ими начало использоваться натуральное олово для покрытия контактных поверхностей и выводов. Подобный вариант позволяет по приемлемой стоимости получать качественное защитное покрытие. Благодаря отсутствию примесей, новая технология не только считается экологически безопасной, но и дает возможность получать отличный результат по приемлемой стоимости. Именно олово производители считают перспективным и современным металлом в электротехнике, радиоэлектронике.