Фенол: свойства и технология производства. Химические свойства фенолов


Фенол (гидроксибензол, карболовая кислота) это о рганическ ое соединение ароматического ряда с формул ой C 6 H 5 OH. Относится к одноименному классу – фенолы.

В свою очередь, Фено́лы - это класс органических соединений ароматического ряда, в которых гидроксильные группы OH − связаны с углерода ароматического кольца.

По числу гидроксильных групп различают:

  • одноатомные фенолы (аренолы): фенол и его гомологи;
  • двухатомные фенолы (арендиолы): пирокатехин, резорцин, гидрохинон;
  • трёхатомные фенолы (арентриолы): пирогаллол, гидроксигидрохинон, флороглюцин;
  • многоатомные фенолы.


Соответственно, собственно фенол, как вещество, представляет собой простейший представитель группы фенолов и имеет одно ароматическое ядро и одну гидроксильную группу ОН .

Свойства фенола

Свежеперегнанный фенол представляет собой бесцветные игольчатые кристаллы с температурой плавления 41 °С и температурой кипения 182 °С . При хранении, особенно во влажной атмосфере и в присутствии небольших количеств солей железа и меди, он быстро приобретает красную окраску. Фенол смешивается в любых соотношениях со спиртом, водой (при нагревании свыше 60 °С ), хорошо растворим в эфире, хлороформе, глицерине, сероуглероде.

Из-за наличия -OH гидроксильной группы, фенол имеет химические свойства характерные для спиртов, так и ароматических углеводородов.

По гидроксильной группе фенол вступает в следующие реакции:

  • Так как фенол обладает немного более сильными кислотными свойствами, чем у спирты, то под воздействием щелочей он образует соли - феноляты (к примеру, фенолят натрия - C 6 H 5 ONa ):

C 6 H 5 OH + NaOH -> C 6 H 5 ONa + H 2 O

  • В результате взаимодействия фенола с металлическим натрием также получается фенолят натрия:

2C 6 H 5 OH + 2Na -> 2C 6 H 5 ONa + H 2

  • Фенол непосредственно не этерифицируется карбоновыми кислотами, получение эфиров осуществляют путем взаимодействия фенолятов с ангидридами или галогенангидридами кислот:

C 6 H 5 OH + CH 3 COOH -> C6H 5 OCOCH 3 + NaCl

  • При перегонке фенола с цинковой пылью идет реакция замещения гидроксильной группы водородом:

C 6 H 5 OH + Zn -> C 6 H 6 + ZnO

Реакции фенола по ароматическому кольцу:

  • Фенол вступает в реакции электрофильного замещения по ароматическому кольцу. Группа ОН, являясь одной из самых сильных донорных групп (вследствие уменьшении электронной плотности на функциональной группе), увеличивает реакционную способность кольца к этим реакциям и направляет замещение в орто- и пара- положения. Фенол легко алкилируется, ацилируется, галогенируется, нитруется и сульфируется.
  • Реакция Кольбе - Шмитта служит для синтеза салициловой кислоты и её производных (ацетилсалициловой кислоты и других).

C 6 H 5 OH + CO 2 – NaOH -> C 6 H 4 OH(COONa)

C 6 H 4 OH(COONa) – H2SO4 -> C 6 H 4 OH(COOH)

Качественные реакции на фенол:
  • В результате взаимодействия с бромной водой:

C 6 H 5 OH + 3Br 2 -> C 6 H 2 Br 3 OH +3HBr

образуется 2,4,6-трибромфенол - твёрдое вещество белого цвета.
  • С концентрированной азотной кислотой:

C 6 H 5 OH + 3HNO 3 -> C 6 H 2 (NO 2) 3 OH + 3H 2 O

  • С хлоридом железа(III) (качественная реакция на фенол):

C 6 H 5 OH + FeCl 3 -> ⌈Fe(C 6 H 5 OH) 6 ⌉Cl 3

Реакция присоединения

  • Гидрированием фенола в присутствии металлических катализаторов Pt/Pd, Pd/Ni , получают циклогексиловый спирт:

C 6 H 5 OH -> C 6 H 11 OH

Окисление фенола

Вследствие наличия гидроксильной группы в молекуле фенола, устойчивость к окислению много ниже нежели, чем у бензола. В зависимости от природы окислителя и условия проведения реакции получаются различные продукты.

  • Так под действием перекиси водорода в присутствии железного катализатора образуется небольшое количество двухатомного фенола - пирокатехина:

C 6 H 5 OH + 2H 2 O 2 – Fe> C 6 H 4 (OH) 2

  • При взаимодействии более сильных окислителей (хромовая смесь, диоксид марганца в кислой среде) образуется пара-хинон.

Получение фенола

Получают фенол из каменноугольной смолы (продукта коксования) и синтетическим путем.

В каменноугольной смоле коксохимического производства содержится от 0,01 до 0,1% фенолов, в продуктах полукоксования от 0,5 до 0,7%; в масле, образующемся при гидрогенизации, и в сточной воде, вместе взятых,- от 0,8 до 3,7%. В смоле бурого угля и сточных водах полукоксования содержится от 0,1 до 0,4% фенолов. Каменноугольную смолу перегоняют, отбирая фенольную фракцию, выкипающую при 160-250 °С . В состав фенольной фракции входят фенол и его гомологи (25-40%), нафталин (25-40%) и органические основания (пиридин, хинолин). Нафталин отделяют фильтрованием, а оставшуюся часть фракции обрабатывают 10-14%-ным раствором едкого натра.

Образовавшиеся феноляты отделяют от нейтральных масел и пиридиновых оснований путем продувки острым паром, а затем обрабатывают диоксидом углерода. Выделенные сырые фенолы подвергают ректификации, отбирая последовательно фенол, крезолы и ксиленолы.

Большая часть фенола, производимого в настоящее время в промышленном масштабе, получается различными синтетическими методами

Синтетические методы получения фенола

  1. По бензолсульфонатному методу бензол смешивают с купоросным маслом. Полученный продукт обрабатывают содой и получают натриевую соль бензолсульфокислоты, после чего раствор упаривают, отделяют выпавший сульфат натрия, а натриевую соль бензолсульфокислоты сплавляют со щелочью. Образовавшийся фенолят натрия либо насыщайте диоксидом углерода, либо добавляют серную кислоту до начала выделения диоксида серы и отгоняют фенол.
  2. Хлорбензольный метод заключается в прямом хлорировании бензола газообразным хлором в присутствии железа или его солей и омылении образующегося хлорбензола раствором едкого натра или при гидролизе в присутствии катализатора.
  3. Модифицированный метод Рашига основан на окислительном хлорировании бензола хлористым водородом и воздухом с последующим гидролизом хлорбензола и выделением фенола перегонкой.
  4. Кумольный метод заключается в алкилировании бензола, окислении полученного изопропилбензола в гидропероксид кумола и последующем разложении его на фенол и ацетон:
    Изопропилбензол получают действием на бензол чистого пропилена или пропан-пропиленовой фракции нефтекрекинга, очищенной от других ненасыщенных соединений, влаги, меркаптанов и сероводорода, отравляющих катализатор. В качестве катализатора используют трихлорид алюминия, растворенный в полиалкилбензоле, например. в диизопропилбензоле. Алкилирование ведут при 85 °С и избыточном давлении 0,5 МПа , что обеспечивает протекание процесса в жидкой фазе. Изопропилбензол окисляют в гидропероксид кислородом воздуха или техническим кислородом при 110-130°С в присутствии солей металлов переменной валентности (железо, никель, кобальт, марганец) Разлагают гидропероксид разбавленными кислотами (серной или фосфорной) или небольшими количествами концентрированной серной кислоты при 30-60 °С . После ректификации получают фенол, ацетон и некоторое количество α-метилстирола . Промышленный кумольный метод, разработанный в СССР, является экономически наиболее выгодным по сравнению с другими методами получения фенола. Получение фенола через бензолсульфокислоту связано с расходованием больших количеств хлора и щелочи. Окислительное хлорирование бензола связано с большим расходом пара-в 3-6 раз большим, чем при применении других методов; кроме того, при хлорировании происходит сильная коррозия аппаратуры, что требует применения специальных материалов. Кумольный метод прост по аппаратурному оформлению и позволяет получать одновременно два технически ценных продукта: фенол и ацетон.
  5. При окислительном декарбоксилировании бензойной кислоты сначала проводят жидкофазное каталитическое окисление толуола в бензойную кислоту, которая в присутствии Сu 2+ превращается в бензолсалициловую кислоту. Этот процесс может быть описан следующей схемой:
    Бензоилсалициловая кислота разлагается водяным паром на салициловую и бензойные кислоты. Фенол образуется в результате быстрого декарбоксилирования салициловой кислоты.

Применение фенола

Фенол используют как сырье для производства полимеров: поликарбоната и (сначала синтезируют бисфенол А, а затем – эти ), фенолфольмальдегидных смол, циклогексанола (с последующим получением нейлона и капрона).

В процессе нефтепереработки при помощи фенола проводят очистку масел от смолистых веществ, серосодержащих соединений и полициклических ароматических углеводородов.

Кроме того, фенол служит сырьем для производства ионола, неонолов (), креозолов, аспирина, антисептиков и пестицидов.

Фенол хороший консервант и антисептик. Его используют для дезинфекции в животноводстве, в медицине, в косметологии.

Токсические свойства фенола

Фенол токсичен (класс опасности II). При вдыхании фенола нарушаются функций нервной системы. Пыль, пары и раствор фенола при попадании на слизистые оболочки глаз, дыхательных путей, кожу, вызывают химические ожоги. При попадании на кожу фенол всасывается в течение нескольких минут и начинает воздействовать на ЦНС. В больших дозах может вызывать паралич дыхательного центра.Смертельная доза для человека при попадании внутрь 1-10 г , для детей 0,05-0,5 г.

Список литературы:
Кузнецов Е. В., Прохорова И. П. Альбом технологических схем производства полимеров и пластических масс на их основе. Изд. 2-е. М., Химия, 1975. 74 с.
Кноп А., Шейб В. Фенольные смолы и материалы на их основе. М., Химия, 1983. 279 с.
Бахман А., Мюллер К. Фенопласты. М., Химия, 1978. 288 с.
Николаев А. Ф. Технология пластических масс, Л., Химия, 1977. 366 с.

Фенол – это химическое органическое вещество, углеводород. Другие названия – карболовая кислота, гидроксибензол. Он бывает природного и промышленного происхождения. Что такое фенол и каково его значение в жизни человека?

Происхождение вещества, химические и физические свойства

Химическая формула фенола – c6h5oh. По внешнему виду вещество напоминает кристаллы в виде иголок, прозрачные, с белым оттенком. На открытом воздухе при взаимодействии с кислородом окраска приобретает светло-розовый цвет. Для вещества характерен специфический запах. Фенол пахнет как краска гуашь.

Природные фенолы – это антиоксиданты, которые в разных количествах присутствуют во всех растениях. Они обуславливают цвет, аромат, защищают растения от вредных насекомых. Природный фенол полезен для организма человека. Он содержится в оливковом масле, зернах какао, фруктах, орехах. Но встречаются и ядовитые соединения, например, танин.

Химическая промышленность производит эти вещества путем синтеза. Они ядовиты и очень токсичны. Фенол опасен для человека, также промышленные масштабы его производства значительно загрязняют окружающую среду.

Физические свойства:

  • нормально растворяется фенол в воде, спирте, щелочи;
  • имеет низкую температуру плавления, при 40°C превращается в газ;
  • по своим свойствам во многом напоминает спирт;
  • обладает высокой кислотностью и растворимостью;
  • при комнатной температуре находятся в твердом состоянии;
  • запах фенола резкий.

Как применяют фенолы

Более 40% веществ используют в химической промышленности для получения других органических соединений, в основном смол. Также из него искусственные волокна – капрон, нейлон. Вещество применяют в нефтеперерабатывающей отрасли для очищения масел, которые применяют в буровых установках и других технологических объектах.

Фенол используют для производства лакокрасочной продукции, пластмасс, в составе химикатов и пестицидов. В ветеринарии веществом на фермах обрабатывают животных сельскохозяйственного значения для профилактики инфекций.

Применение фенола в фармацевтической промышленности значительное. Он входит в состав многих лекарственных препаратов:

  • антисептики;
  • обезболивающие;
  • антиагреганты (разжижают кровь);
  • как консервант для производства вакцин;
  • в косметологии в составе препаратов для химического пилинга.

В генной инженерии фенол применяют для очистки ДНК и его выделения из клетки.

Токсическое действие фенола

Фенол – это яд . По своей токсичности соединение относится ко 2-му классу опасности. Это значит, что оно высокоопасное для окружающей среды. Степень воздействия на живые организмы высокая. Вещество способно нанести серьезный ущерб экологической системе. Минимальный период восстановления после действия фенола составляет минимум 30 лет, при условии полной ликвидации источника загрязнения.

Синтетический фенол влияние на организм человека оказывает негативное. Токсическое действие соединения на органы и системы:

  1. При вдыхании паров или проглатывании поражаются слизистые оболочки пищеварительного тракта, верхних дыхательных путей, глаз.
  2. При попадании на кожу образуется ожог фенолом.
  3. При глубоком проникновении вызывает некроз тканей.
  4. Оказывает выраженное токсическое действие на внутренние органы. При поражении почек вызывает пиелонефрит, разрушает структуру эритроцитов, что приводит к кислородному голоданию. Способен вызвать аллергический дерматит.
  5. При вдыхании фенола в больших концентрациях нарушается работа мозговой деятельности, может привести к остановке дыхания.

Механизм токсичного действия фенолов заключается в изменении структуры клетки и, как следствие, ее функционирования. Наиболее восприимчивы к ядовитым веществам нейроны (нервные клетки).

Предельно допустимая концентрация (ПДК фенола):

  • максимально разовая доза в атмосфере для населенных мест составляет 0,01 мг/м³, которая держится в воздухе на протяжении получаса;
  • среднесуточная доза в атмосфере для населенных мест составляет 0,003 мг/м³;
  • смертельная доза при попадании внутрь организма составляет для взрослых от 1 до 10 г, для детей от 0,05 до 0,5 г.

Симптомы отравления фенолом

Вред фенола на живой организм давно доказан. При попадании на кожу или слизистые соединение быстро всасывается, преодолевает гематогенный барьер и с кровью разносится по всему телу.

Первым на воздействие яда реагирует головной мозг. Признаки отравления у человека:

  • Психика. Первоначально пациент испытывает легкое возбуждение, которое длится непродолжительно и сменяется раздражение. Затем наступает апатия, безразличие к происходящему вокруг, человек находится в угнетенном состоянии.
  • Нервная система. Нарастает общая слабость, вялость, упадок сил. Смазывается тактильная чувствительность, но реакция на свет и звуки обостряется. Пострадавший чувствует тошноту, которая не связана с работой пищеварительной системы. Появляется головокружение, головная боль становится более интенсивной. Тяжелое отравление может привести к судорогам и бессознательному состоянию.
  • Кожные покровы. Кожа становится бледной и холодной на ощупь, при тяжелом состоянии приобретает синий оттенок.
  • Органы дыхания. При попадании даже незначительных доз в организм у человека появляется одышка и учащенное дыхание. Из-за раздражения слизистой носа у пострадавшего беспрерывное чихание. При отравлении средней степени тяжести развивается кашель и спастические сокращения гортани. В тяжелых случаях возрастает угроза спазма трахеи и бронхов и, как следствие, удушье, приводящее к летальному исходу.

Обстоятельства, при которых может произойти отравление – нарушение правил техники безопасности при работе с особо опасными веществами, передозировке лекарственными препаратами, бытовом отравлении моющими и чистящими средствами, в результате несчастного случая.

Если в доме находится мебель низкого качества, детские игрушки, не соответствующие международным стандартам безопасности, стены покрашены краской, не предназначенной для этих целей, то исходящие пары фенола человек вдыхает постоянно. В этом случае развивается хроническое отравление. Его основной признак – синдром хронической усталости.

Принципы оказания первой помощи

Первое, что необходимо сделать, это прервать контакт человека с отравляющим источником.

Пострадавшего вынести из помещения на свежий воздух, расстегнуть пуговицы, замки, молнии, чтобы лучше обеспечить доступ кислорода.

Если раствор фенола попал на одежду, ее немедленно снять. Пораженную кожу и слизистую глаз многократно и тщательно промыть проточной водой.

При попадании фенола в ротовую полость ничего не проглатывать, а немедленно прополоскать рот в течение 10 минут. Если вещество успело попасть в желудок, можно выпить сорбент со стаканом воды:

  • активированный или белый уголь;
  • энтеросорб;
  • энтеросгель;
  • сорбекс;
  • карболен;
  • полисорб;
  • лактофильтрум.

Нельзя промывать желудок, так как эта процедура усилит степень ожога и увеличит площадь поражения слизистой.

Антидот фенола – раствор глюконата кальция для внутривенного введения. При отравлении любой степени тяжесть пострадавший доставляется в больницу для наблюдения и лечения.

Вывести фенол из организма в условиях стационара при тяжелых отравлениях можно такими методами:

  1. Гемосорбция – очищение крови специальным сорбентом, который связывает молекулы ядовитого вещества. Кровь очищается путем прогонки в специальном аппарате.
  2. Дезинтоксикационная терапия – внутривенное вливание растворов, которые разбавляют концентрацию вещества в крови и способствуют его естественному выведению из организма (через почки).
  3. Гемодиализ – показан в тяжелых случаях, когда есть потенциальная угроза жизни. Процедура проводится с помощью аппарата «искусственная почка», в котором кровь проходит через специальные мембраны и оставляет молекулы отравляющего вещества. В организм кровь возвращается чистая и насыщенная полезными микроэлементами.

Фенол – это синтетическое отравляющее вещество, опасное для человека. Даже соединение природного происхождения может нанести вред здоровью. Чтобы избежать отравления, необходимо с ответственностью относится к работе на производстве, где есть риск контакта с ядом. При покупках интересоваться составом продукции. Неприятный запах пластмассовых изделий должен насторожить. При употреблении лекарственных препаратов с содержанием фенола соблюдать предписанную дозировку.


Термическое разложение полученной соли с переходом и с образованием сложного эфира салициловой или смещенной салициловой кислоты:

При нагревании солей двухвалентной меди без доступа пара и воздуха исчезает характерное для этих солей синее или зеленое окрашивание, образуются бесцветные соли одновалентной меди. При проведении процесса в более жестких условиях (высокая температуpa, длительное нагревание, недостаток свободной кислоты) образуется элементарная медь.

Это, как и образование одновалентной меди, связано с резким усилением электроноакцепторных свойств меди при повышении температуры.

3. Регенерация Сu 1 и Си 0 .При барботаже воздуха через расплав кислоты, содержащий одновалентную или элементарную медь, эта последняя окисляется до двухвалентного состояния:


В присутствии водяного пара возможен гидролиз кислых эфиров с образованием исходных арилкарбоновых и оксиарилкарбоновых кислот. Последние декарбоксилируются до фенолов.



Относительно механизма образования фенолов при окислении арилкарбоновых кислот существуют противоречивые точки зрения Кэдинг и Толанд предполагают образование промежуточного соединения, образующегося при нуклеофильной атаке кольца атомом кислорода. При этом в реакции участвует димер медной соли, т. е. два атома меди находятся рядом. Для медныхсолей толуиловых кислот это промежуточное соединение можно отразить следующим образом:

Здесь близость атома кислорода к орто -положению (по отношению к карбоксильной группе) допускает нуклеофильную атаку в это положение. Ионизация связи медь-кислород увеличивает возможность такой атаки.



Однако эти представления не объясняют обязательное расположение гидроксильной группы в орто -положении по отношению к карбоксильной группе. Кроме того, ингибиторы цепных реакций, тормозящие смолообразование и некоторые другие побочные процессы, заведомо протекающие по радикальноцепному механизму, не оказывают влияния на скорость образования фенола Изложенное говорит о большей вероятности ионного механизма окислительного декарбоксилирования.

Исследования термического разложения медных солей арилкарбоновых кислот и арилсульфокислот показали, что только арилкарбоновые кислоты могут явиться реальным сырьем для синтеза фенолов. Арилсульфокислоты и диарилсульфоны дают незначительные количества фенолов (до 1-2% на превращенный исходный продукт). Однако уже при минимально необходимых для протекания реакции температурах - при 180-190 °С - идет интенсивное термическое разложение сульфокислоты с образованием коксообразного остатка и двуокиси серы. Образующийся эфир сульфокислоты и крезола (или другого фенола) значительно устойчивее к гидролизу, чем сама сульфокислота, распадающаяся на углеводород и серную кислоту. В то же время термически сложный эфир сравнительно мало устойчив.


Скорость превращения медных солей арилкарбоновых кислот зависит от природы и положения имеющихся заместителей в ядре. В отсутствие воздуха и водяного пара процесс протекает по уравнению:

с образованием только соответствующего сложного эфира, медной соли (I) арилкарбоновой кислоты и двуокиси углерода. При этом по выходу двуокиси углерода можно с достаточной точностью судить о скорости реакции. Само термическое разложение протекает по реакции первого порядка, кинетика разложения характеризуется данными, приведенными в табл. 2.2.

Таблица 2.2.

Кинетика разложения медных солей (I) арилкарбоновой кислоты

Как следует из этих данных, реакция значительно ускоряется при введении в ароматическое кольцо метальной группы. При этом скорость реакции растет в ряду: бензоат-п -толуилат-м -толуилат о -толуилат. Введение в пара -положение по отношению к карбоксильной группе атома хлора несколько уменьшает скорость процесса, введение в орто -положение несколько ее увеличивает (по сравнению с бензоатом меди).

Таким образом, получение крезолов из толуиловых кислот возможно в более мягких условиях, чем фенола из бензойной кислоты и хлорфенолов, из хлорбензойных кислот. Синтез м -крезола из о -толуиловой кислоты возможен при температуре на 20-30 о С ниже, чем из п- толуиловой кислоты. Скорость процесса значительно увеличивается (в 4-5 раз) при добавлении в реакционную массу окиси магния.

Фенол в промышленности также получают окислением бензойной кислоты в газовой фазе при 200-400 о С в присутствии твердых катализаторов, например: солей меди и активаторов оксидов металлов Co, Mo, W, причем продуктами реакции является фенол, бензол и дифенилоксид. К недостаткам этих процессов относятся низкая селективность и активность катализаторов.

Предложен способ получения фенола окислением бензойной кислоты в газовой фазе при 250-350 о С, мольном отношении реагентов бензойная кислота/ вода/ кислород равном 0,6-2,5/ 40-70/ 1,5-2,5 и объемной скорости подачи бензойной кислоты 0,01-0,22 кг/чּкг катализатора, отличающийся тем, что реакцию проводят в присутствии катализаторов оксидного типа общей формулы Cu-M-O, нанесенном на оксид алюминия с удельной поверхностью 40-190 м 2 /г, где М-0,01-10,9 масс. % щелочного, щелочноземельного металла или металлов II б группы периодической системы элементов, содержание меди равно 1,5-9,5 масс. %. Удельная поверхность катализатора перед использованием составляет 40-100 м 2 /г. Для сохранения активности и увеличения продолжительности работы катализатора в реактор подают водяной пар в 40-70-кратном мольном избытке по отношению к бензойной кислоте. При более высоком отношении водяного пара снижается скорость реакции. В качестве окисляющего агента можно использовать молекулярный кислород или его смеси с инертными газами, предпочтительно воздуха.

Катализаторы приготавливают пропиткой носителя (оксида алюминия) в водном растворе соответствующих солей в течении 24 ч. После упаривания воды катализаторы прокаливают в течении 3,5-11 ч при 450-800 о С в зависимости от компонентов катализатора. К достоинству способа относится простота приготовления катализаторов.

Предложен способ получения фенола прямым каталитическим гидроксилированием бензола. Реакция прямого введения гидроксильной группы в бензольное ядро известна не так давно. Она осуществляется путем воздействия закиси азота N 2 O с бензолом в присутствии катализатора на основе оксидов металлов V и VI группы периодической системы, предпочтительно V 2 O 5 нанесенного на SiO 2 в количестве от 1 до 10 масс.% (использование Al 2 O 3 приводит к значительному разложению бензола до оксидов углерода). В данном виде реакция получения фенола малопригодна для внедрения в промышленности.

Предложенный способ синтеза фенола основан на прямом гидроксилировании бензола в присутствии закиси азота N 2 O и цеолитов кислотного характера, являющихся доступными, дешевыми реагентами, удобными в промышленном использовании. Применяют следующие типы цеолитов:

1) Цеолит ZSM-5 компании Mobil-oil

2) Цеолит US-Y, фирма TOYO-SODA

3) Цеолит HY, компания Union Carbide Chemical

4) Цеолит H-Mordenit фирмы Grand Paroisse

Предпочтительнее применять цеолит ZSM-5

Цеолит имеет соотношение SiO 2 / Al2O 3 больше 90, предпочтительно от 90 до 500. Исходный цеолит обрабатывают для повышения кислотности минеральной кислоты (соляной, серной, азотной, хлорной, фосфорной) или органической, например: трифторметан-сульфоновой или аналогичной. Концентрация кислоты обычно составляет от 0,1н до 2н. При обработке берут от 10 до 100 мл на 1 г цеолита. Закись азота используют чистую или в смеси с инертным газом, не содержащим кислорода, например: азотом. Предпочтительное молярное соотношение бензол/ N 2 O – от 1 до 10. Температура реакции 300-500 о С, при этом смесь паров бензола с закисью азота пропускают через слой цеолита.

1. Харлампович, Георгий Дмитриевич и Чркин, Юрий Васильевич Фенолы. М., «Химия», 1974, 376 с.

Это производные ароматических УВ, в которых один или несколько атомов Н замещены на –ОН группу.

I-Гидрокси- 2-метилбензол, О-крезол

I-Гидрокси-3-метилбензол, М-крезол

I-Гидрокси-4-метилбензол, n-крезол

Бензиловый спирт

Изомеры положения

Двухатомные фенолы:

Каждый фенол дает свое характерное окрашивание в качественной реакции с FеС1 3:

Фенол  Фиолетовое, Гидрохинон  Грязно-зеленое,

Пирокатехин  Зеленое, Резорцин  Фиолетовое,

С

Связь очень прочная

троение молекулы

. .

Связь менее прочная

–ОН группа проявляет + М >, чем –I, являясь ЭД.

Р-ции S Е протекают легко за счет +М гр. –ОН, р-ции S N не характерны.

Химические свойства

I. Реакции замещения Н в группе –ОН.

Это проявляется при образовании фенолятов, простых и сложных эфиров.

1) Фенолы за счет р, -сопряжения являются более сильными к-тами, чем спирты (одноатомные и многоатомные) и образуют соли (феноляты) в р-циях с Ме, МеОН и даже солями: Реакция с солями отличает их от одноатомных и многоатомных спиртов.

С 6 Н 5 ОН + NаОН  С 6 Н 5 ОNа + Н 2 О

Фенолят натрия

Однако фенолы более слабые к-ты, чем Н 2 СО 3 , поэтому при действии Н 2 СО 3 (СО 2 + Н 2 О) и др. к-т феноляты легко разлагаются и обратная р-ция не возможна.

С 6 Н 5 ОNа + СО 2 + Н 2 О  С 6 Н 5 ОН + NаНСО 3

3С 6 Н 5 ОН + FеС1 3  (С 6 Н 5 О) 3 Fе + 3НС1

Фиолетовое окрашивание

4) Р-ция восстановления с цинковой пылью при нагревании:

С 6 Н 5 ОН + 3Н 2 С 6 Н 12 + ZnО Р-ции по –ОН группе не характерны!

    Р-ции по бензольному кольцу (S Е)

–ОН группа – ориентант I рода, облегчает реакции по бензольному кольцу, направляя атаку электрофильного реагента преимущественно в орто- и пара- положения:

Пикриновая к-та близка по силе (степени диссоциации) к соляной к-те, т.к. содержит три ЭА группы, усиливающие кислотность.

    Р-ция гидрирования

    Из фенолята натрия легко получается салициловая к-та (важный продукт фармацевтической промышленности):

Фенол и его производные обладают дезинфицирующим свойством. Резорцин – антисептик при кожных заболеваниях. Карболовая к-та – 3%-ный раствор фенола – для дезинфекции хирургических инструментов. Пирокатехин применяется для синтеза адреналина – гормона надпочечников. В промышленности фенол используют для получения фенолоформальдегидных смол и ряда красителей.

Увеличение групп –ОН в фенолах увеличивает их активность в р-циях S Е. Такие фенолы очень легко окисляются, являясь хорошими восстановителями (гидрохинон в фотографии). Двухатомные фенолы легко окисляются под действием слабых окислителей и даже кислородом воздуха, образуя хиноны. Последние легко восстанавливаются в дигидрохиноны:

Многие биологические вещества содержат «хиноидную» систему: витамин К 2 (фактор свертываемости крови), окислительно-восстановительные ферменты тканевого дыхания – убихиноны.

Л и т е р а т у р а:

1.Тюкавкина С. 153-158, 242-246.

Контрольные вопросы к теме «Фенолы»

    Какие органичекие соединения называются фенолами?

    Изобразите электронное строение молекулы фенола.

    Какие виды сопряжения имеются в молекуле фенола?

    Какое влияние оказывает группа ОН на бензольное кольцо?

Упражнения и ситуационные задачи:

    Напишите реакции фенола с хлорангидридом уксусной кислоты.

    Напишите качественную реакцию на фенол.

    Напишите реакции фенола с бромом и азотной кислотой.

    Напишите реакцию окисления диоксибензола.

    Напишите реакцию взаимодействия фенола с гидроксидом натрия и объясните, почему фенол реагирует сщелочами, а одноатомные спирты нет.

    Салициловая кислота частично выделяется из организма почками и оказывает некоторое дезинфицирующее влияние в мочевых путях. Напишите реации образования её из фенола.

    Пикриновая кислота входит в состав взрывчатых веществ. Напишите реакцию её образования.

Лекция 6

Амины

Это производные аммиака NH 3 , где один, два или три атома Н замещены на радикал R (алифатический или ароматический).

В зависимости от числа атомов Н, замещенных на R, различают первичные, вторичные и третичные амины. NH 2 – аминогруппа, –NH – иминогруппа.

Номенклатура

Рациональная – название радикала (R) + «амин»:

СН 3 – СН 2 – СН 2 – NН 2 СН 3 – NН– СН 3

Пропиламин Диметиламин

МН рассматривает гр. –NH 2 как заместитель в первичных аминах и ее название ставят в приставке перед названием основной цепи (корня):

2-Аминопропан

Изомерия

Для первичных аминов – изомерия углерод-углеродной цепи (3, 4) и положения гр. – NH 2 (1, 2); для вторичных и третичных аминов – изомерия радикала (5, 6) – метамерия:


Пропиламин Изопропиламин


Бутиламин Изобутиламин

    СН 3 – СН 2 – СН 2 –NН–СН 3 СН 3 – СН 2 –NН – СН 2 –СН 3

Метилпропиламин Диэтиламин

Физические св-ва

Метиламин, диметиламин, триметиламин – газы, хорошо растворимые в воде; средние члены гомологического ряда аминов – жидкости, высшие – твердые вещ-ва.

Амины в заметных количествах образуются при гниении органических остатков, содержащих белки. Ряд аминов образуется в организме человека и животных из -аминокислот под действием ферментов. Такие амины принято называть биогенными аминами.

Связи N – H, C – N полярны, однако полярность NH связи больше, чем CN согласно различной ЭО атомов N, С, Н. Поэтому первичные и вторичные амины, подобно спиртам, склонны к образованию Н-связей.

На рисунке показана взаимосвязь различных методов производства фенола, а в таблице под теми же номерами приведены их технико-экономические показатели (в % относительно сульфонатного метода).

Рис. 1.1. Методы производства фенола

Таблица 1.3

Технико-экономические показатели производства фенола
Методы
Показатель 1 2 3 4 5 6
Капитальные затраты 100 83 240 202 208 202
Стоимость сырья 100 105 58 69 72 45
Себестоимость 100 96 70 73 76 56

Таким образом, наиболее целесообразным с экономической точки зрения является наиболее востребованный в настоящее время кумольный процесс. Ниже кратко описаны промышленные процессы, которые в то или иное время использовались для получения фенола.

1. Сульфонатный процесс был первым фенольным процессом, реализованным в промышленном масштабе фирмой «BASF» в 1899 г. Этот метод основан на сульфировании бензола серной кислотой с последующим щелочным плавлением сульфокислоты. Несмотря на применение агрессивных реагентов и образование большого количества отходов сульфита натрия, данный метод использовался в течение почти 80 лет. В США это производство было закрыто лишь в 1978 году.

2. В 1924 г. фирмой «Dow Chemical» был разработан процесс получения фенола, включающий реакцию хлорирования бензола и последующий гидролиз монохлорбензола (процесс каталитического гидролиза галогензамещенных бензолов ). Независимо аналогичная технология была разработана немецкой фирмой «I.G. Farbenindustrie Co». Впоследствии стадия получения монохлорбензола и стадия его гидролиза были усовершенствованы, и процесс получил название «процесс Рашига». Суммарный выход фенола по двум стадиям составляет 70-85%. Данный процесс был основным методом получения фенола в течение нескольких десятилетий.

3. Циклогексановый процесс , разработанный фирмой «Scientific Design Co.», основан на окислении циклогексана в смесь циклогексанона и циклогексанола, которая далее дегидрируется с образованием фенола. В 60-е годы фирма «Monsanto» в течение нескольких лет использовала этот метод на одном из своих заводов в Австралии, однако в дальнейшем перевела его на кумольный способ получения фенола.

4. В 1961 г. фирмой «Dow Chemical of Canada» был реализован процесс через разложение бензойной кислоты , это единственный способ синтеза фенола, основанный на использовании небензольного сырья. Обе реакции протекают в жидкой фазе. Первая реакция. окисление толуола. использовалась в Германии уже в период Второй мировой войны для получения бензойной кислоты. Реакция протекает в довольно мягких условиях с высоким выходом. Вторая стадия является более трудной вследствие дезактивации катализатора и низкой селективности по фенолу. Полагают, что проведение этой стадии в газовой фазе может сделать процесс более эффективным. В настоящее время этот метод используется на практике, хотя его доля в мировом производстве фенола составляет лишь около 5%.

5. Метод синтеза, по которому в наши дни получают большую часть производимого в мире фенола - кумольный процесс - открыт группой советских химиков во главе с профессором П. Г. Сергеевым в 1942 году. Метод основан на окислении ароматического углеводорода кумола (изопропилбензол) кислородом воздуха с последующим разложением получающейся гидроперекиси, разбавленной серной кислотой. В 1949 году в г. Дзержинске Горьковской области был введен в действие первый в мире кумольный завод. До этого гидроперекиси считались малостабильными промежуточными продуктами окисления углеводородов. Даже в лабораторной практике их почти не использовали. На Западе кумольный метод был разработан в конце 40-х годов и отчасти известен как процесс Хока, по имени немецкого ученого, позднее независимо открывшего кумольный путь синтеза фенола. В ромышленном масштабе этот метод стал впервые использоваться в США в начале 50-х годов. С этого времени на многие десятилетия кумольный процесс становится образцом химических технологий во всем мире.

Несмотря на прекрасно отлаженную технологию и длительный опыт эксплуатации, кумольный метод имеет ряд недостатков. Прежде всего это наличие взрывоопасного промежуточного соединения (гидропероксид кумола), а также многостадийность метода, что требует повышенных капитальных затрат и делает труднодостижимым высокий выход фенола в расчете на исходный бензол. Так, при выходе полезного продукта 95% на каждой из трех стадий итоговый выход составит лишь 86%. Приблизительно такой выход фенола и дает кумольный метод в настоящее время. Но самый важный и принципиально неустранимый недостаток кумольного метода связан с тем, что в качестве побочного продукта образуется ацетон. Это обстоятельство, которое первоначально рассматривалось как сильная сторона метода, становится все более серьезной проблемой, поскольку ацетон не находит эквивалентного рынка сбыта. В 90-х годах эта проблема стала особенно ощутимой после создания новых способов синтеза метилметакрилата путем окисления углеводородов С4, что резко сократило потребность в ацетоне. Об остроте ситуации говорит тот факт, что в Японии разработана технология, предусматривающая рецикл ацетона. С этой целью к традиционной кумольной схеме добавляются еще две стадии, гидрирование ацетона в изопропиловый спирт и дегидратация последнего в пропилен. Образующийся пропилен снова возвращают на стадию алкилирования бензола. В 1992 году фирма «Mitsui» пустила крупное производство фенола (200 тыс. т/год), основанное на этой пятистадийной кумольной технологии.


Рис. 1.2. Рецикл ацетона с получением пропилена

Предлагаются также другие сходные модификации кумольного метода, которые позволили бы смягчить проблему ацетона. Однако все они приводят к значительному усложнению технологии и не могут рассматриваться как перспективное решение проблемы. Поэтому исследования, ориентированные на поиск новых путей синтеза фенола, которые основывались бы на прямом окислении бензола, в последнее десятилетие приобрели особенно интенсивный характер. Работы ведутся главным образом в следующих направлениях: окисление молекулярным кислородом, окисление моноатомными донорами кислорода и сопряженное окисление. Рассмотрим более подробно направления поиска новых путей синтеза фенола.